90 Number Bingo - Analysis
Introduction
Unlike American bingo, with a 5 by 5 card, with numbers from 1 to 75, in Europe and South America bingo is often played with a 3 by 9 card with numbers from 1 to 90. Below is an example.
As the example shows, the card contains 3 rows and 9 columns. On each row are exactly 5 numbers. The other four cells in each row are blank, or free squares. From other examples I have seen the first row contains the numbers 1 to 10, the second 11 to 20, and so on, but mathematically this doesn't matter. Winning events I have heard of all are based on covering rows only, so mathematically speaking the game could played on a 3 by 5 card with all numbers covered, the odds would be the same.
The following table shows the probability of covering 0 to 3 rows exactly by number of balls drawn.
Probabilities in 90-Number Bingo
Calls | Zero Rows | One Row | Two Rows | Three Rows |
---|---|---|---|---|
5 | 0.99999993 | 0.00000007 | 0.00000000 | 0.00000000 |
6 | 0.99999959 | 0.00000041 | 0.00000000 | 0.00000000 |
7 | 0.99999857 | 0.00000143 | 0.00000000 | 0.00000000 |
8 | 0.99999618 | 0.00000382 | 0.00000000 | 0.00000000 |
9 | 0.99999140 | 0.00000860 | 0.00000000 | 0.00000000 |
10 | 0.99998280 | 0.00001720 | 0.00000000 | 0.00000000 |
11 | 0.99996846 | 0.00003154 | 0.00000000 | 0.00000000 |
12 | 0.99994594 | 0.00005406 | 0.00000000 | 0.00000000 |
13 | 0.99991215 | 0.00008785 | 0.00000000 | 0.00000000 |
14 | 0.99986334 | 0.00013666 | 0.00000000 | 0.00000000 |
15 | 0.99979502 | 0.00020498 | 0.00000000 | 0.00000000 |
16 | 0.99970184 | 0.00029815 | 0.00000000 | 0.00000000 |
17 | 0.99957761 | 0.00042238 | 0.00000001 | 0.00000000 |
18 | 0.99941517 | 0.00058481 | 0.00000002 | 0.00000000 |
19 | 0.99920632 | 0.00079364 | 0.00000005 | 0.00000000 |
20 | 0.99894179 | 0.00105812 | 0.00000010 | 0.00000000 |
21 | 0.99861115 | 0.00138866 | 0.00000018 | 0.00000000 |
22 | 0.99820277 | 0.00179689 | 0.00000034 | 0.00000000 |
23 | 0.99770370 | 0.00229570 | 0.00000060 | 0.00000000 |
24 | 0.99709968 | 0.00289929 | 0.00000103 | 0.00000000 |
25 | 0.99637503 | 0.00362325 | 0.00000171 | 0.00000000 |
26 | 0.99551261 | 0.00448461 | 0.00000279 | 0.00000000 |
27 | 0.99449375 | 0.00550182 | 0.00000442 | 0.00000000 |
28 | 0.99329824 | 0.00669488 | 0.00000688 | 0.00000000 |
29 | 0.99190422 | 0.00808528 | 0.00001050 | 0.00000000 |
30 | 0.99028822 | 0.00969603 | 0.00001575 | 0.00000000 |
31 | 0.98842504 | 0.01155172 | 0.00002324 | 0.00000001 |
32 | 0.98628779 | 0.01367841 | 0.00003379 | 0.00000001 |
33 | 0.98384784 | 0.01610367 | 0.00004847 | 0.00000002 |
34 | 0.98107483 | 0.01885649 | 0.00006864 | 0.00000004 |
35 | 0.97793665 | 0.02196722 | 0.00009606 | 0.00000007 |
36 | 0.97439951 | 0.02546744 | 0.00013293 | 0.00000012 |
37 | 0.97042791 | 0.02938983 | 0.00018206 | 0.00000020 |
38 | 0.96598475 | 0.03376802 | 0.00024690 | 0.00000034 |
39 | 0.96103137 | 0.03863633 | 0.00033175 | 0.00000055 |
40 | 0.95552768 | 0.04402955 | 0.00044189 | 0.00000088 |
41 | 0.94943224 | 0.04998261 | 0.00058377 | 0.00000139 |
42 | 0.94270245 | 0.05653021 | 0.00076518 | 0.00000215 |
43 | 0.93529473 | 0.06370641 | 0.00099556 | 0.00000331 |
44 | 0.92716472 | 0.07154411 | 0.00128615 | 0.00000502 |
45 | 0.91826755 | 0.08007453 | 0.00165039 | 0.00000753 |
46 | 0.90855815 | 0.08932650 | 0.00210418 | 0.00001117 |
47 | 0.89799157 | 0.09932579 | 0.00266623 | 0.00001641 |
48 | 0.88652342 | 0.11009427 | 0.00335844 | 0.00002387 |
49 | 0.87411026 | 0.12164899 | 0.00420635 | 0.00003440 |
50 | 0.86071014 | 0.13400121 | 0.00523950 | 0.00004915 |
51 | 0.84628315 | 0.14715527 | 0.00649196 | 0.00006963 |
52 | 0.83079206 | 0.16110738 | 0.00800271 | 0.00009786 |
53 | 0.81420297 | 0.17584435 | 0.00981620 | 0.00013648 |
54 | 0.79648609 | 0.19134220 | 0.01198273 | 0.00018898 |
55 | 0.77761658 | 0.20756463 | 0.01455894 | 0.00025984 |
56 | 0.75757538 | 0.22446152 | 0.01760820 | 0.00035491 |
57 | 0.73635018 | 0.24196726 | 0.02120090 | 0.00048166 |
58 | 0.71393646 | 0.25999913 | 0.02541473 | 0.00064968 |
59 | 0.69033853 | 0.27845558 | 0.03033472 | 0.00087116 |
60 | 0.66557064 | 0.29721460 | 0.03605320 | 0.00116155 |
61 | 0.63965818 | 0.31613208 | 0.04266942 | 0.00154032 |
62 | 0.61263880 | 0.33504034 | 0.05028895 | 0.00203191 |
63 | 0.58456365 | 0.35374681 | 0.05902266 | 0.00266688 |
64 | 0.55549858 | 0.37203294 | 0.06898520 | 0.00348328 |
65 | 0.52552523 | 0.38965352 | 0.08029298 | 0.00452826 |
66 | 0.49474217 | 0.40633638 | 0.09306135 | 0.00586010 |
67 | 0.46326585 | 0.42178271 | 0.10740092 | 0.00755051 |
68 | 0.43123143 | 0.43566818 | 0.12341295 | 0.00968745 |
69 | 0.39879339 | 0.44764485 | 0.14118334 | 0.01237841 |
70 | 0.36612594 | 0.45734441 | 0.16077531 | 0.01575434 |
71 | 0.33342294 | 0.46438259 | 0.18222022 | 0.01997425 |
72 | 0.30089756 | 0.46836541 | 0.20550639 | 0.02523064 |
73 | 0.26878130 | 0.46889735 | 0.23056555 | 0.03175580 |
74 | 0.23732239 | 0.46559188 | 0.25725642 | 0.03982931 |
75 | 0.20678340 | 0.45808485 | 0.28534510 | 0.04978664 |
76 | 0.17743793 | 0.44605116 | 0.31448165 | 0.06202926 |
77 | 0.14956616 | 0.42922523 | 0.34417227 | 0.07703633 |
78 | 0.12344911 | 0.40742607 | 0.37374651 | 0.09537832 |
79 | 0.09936129 | 0.38058747 | 0.40231862 | 0.11773261 |
80 | 0.07756165 | 0.34879432 | 0.42874235 | 0.14490167 |
81 | 0.05828228 | 0.31232578 | 0.45155806 | 0.17783387 |
82 | 0.04171481 | 0.27170652 | 0.46893125 | 0.21764743 |
83 | 0.02799390 | 0.22776704 | 0.47858117 | 0.26565789 |
84 | 0.01717756 | 0.18171454 | 0.47769830 | 0.32340960 |
85 | 0.00922370 | 0.13521556 | 0.46284907 | 0.39271166 |
86 | 0.00396252 | 0.09049229 | 0.42986627 | 0.47567891 |
87 | 0.00106401 | 0.05043412 | 0.37372319 | 0.57477869 |
88 | 0.00000000 | 0.01872659 | 0.28838951 | 0.69288390 |
89 | 0.00000000 | 0.00000000 | 0.16666667 | 0.83333333 |
90 | 0.00000000 | 0.00000000 | 0.00000000 | 1.00000000 |
Methodology -- Part 1
Following is how I did the math for the table above. First, let me define some variables.
- n = number of balls drawn.
- a = probability all three rows covered.
- b = probability at least two specific rows covered.
- c = probability at least one specific row covered.
Here are formulas for a, b, and c:
- a = combin(a,15)/combin(90,15)
- b = combin(a,10)/combin(90,10)
- c = combin(a,5)/combin(90,5)
Here are the formulas for exactly zero to three rows covered. For one and two rows, they can be any one or two.
- Exactly three rows covered = a.
- Exactly two rows covered = 3×(b-a).
- Exactly one row covered = 3×(c-2b+a).
- Exactly zero rows covered = 1 - (3c-3b+a).
Methodology -- Part 2
This section shows another way to get the probabilities in the table above.
The probability of covering m marks in c calls is combin(15,m)*combin(75,c-m)/combin(90,m). Using that, you can find the probability of covering a card as combin(75,90-m)/combin(90,m). To get the probability of covering 1 or 2 rows I determined the probability that m marks would cover 1 or 2 rows. The chart below shows those probabilities, which is based on basic probability.
Rows Covered by Number of Marks
Marks | 0 Rows | 1 Row | 2 Rows | 3 Rows | Total |
---|---|---|---|---|---|
5 | 0.999001 | 0.000999 | 0 | 0 | 1 |
6 | 0.994006 | 0.005994 | 0 | 0 | 1 |
7 | 0.979021 | 0.020979 | 0 | 0 | 1 |
8 | 0.944056 | 0.055944 | 0 | 0 | 1 |
9 | 0.874126 | 0.125874 | 0 | 0 | 1 |
10 | 0.749251 | 0.24975 | 0.000999 | 0 | 1 |
11 | 0.549451 | 0.43956 | 0.010989 | 0 | 1 |
12 | 0.274725 | 0.659341 | 0.065934 | 0 | 1 |
13 | 0 | 0.714286 | 0.285714 | 0 | 1 |
14 | 0 | 0 | 1 | 0 | 1 |
15 | 0 | 0 | 0 | 1 | 1 |
The Wizard's Information About Bingo
- Bingo Probabilities
- Coast Casinos bingo
- Analysis of the Jumbo Progressive at Station Casinos
- Analysis of 90-Number Bingo
Written by:Michael Shackleford